Abstract
This paper aims to develop an effective meshless technique for the analysis of elasto-plastic problems. The material nonlinearity will be studied by a new pseudo-elastic local radial point interpolation formulation which is based on the local Petrov–Galerkin form and the radial basis function (RBF) interpolation. Hencky's total deformation theory is used to define the effective Young's modulus and Poisson's ratio, which are treated as spatial field variables, and considered as functions of the final stress state and material properties. These effective material parameters are obtained in an iterative manner using the strain controlled projection method. Several numerical examples are presented to illustrate the effectivity of the newly developed formulation, and the numerical results obtained by the present method closely agree with the results obtained by other methods. It has proven that the present pseudo-elastic local meshless method is effective and easy to apply to the analysis of elasto-plastic materials subjected to proportional loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.