Abstract

Predictive recursion (PR) is a fast, recursive algorithm that gives a smooth estimate of the mixing distribution under the general mixture model. However, the PR algorithm requires evaluation of a normalizing constant at each iteration. When the support of the mixing distribution is of relatively low dimension, this is not a problem since quadrature methods can be used and are very efficient. But when the support is of higher dimension, quadrature methods are inefficient and there is no obvious Monte Carlo-based alternative. In this paper, we propose a new strategy, which we refer to as PRticle filter, wherein we augment the basic PR algorithm with a filtering mechanism that adaptively reweights an initial set of particles along the updating sequence which are used to obtain Monte Carlo approximations of the normalizing constants. Convergence properties of the PRticle filter approximation are established and its empirical accuracy is demonstrated with simulation studies and a marked spatial point process data analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.