Abstract
In this paper, a proximity coupling RF sensor based on injection-locked phase-locked loop (PLL) for wrist pulse detection is proposed. The sensor is composed of two main parts: a free-running oscillator and a PLL synthesizer containing a voltage-controlled oscillator. The free-running oscillator is built with a two-port microstrip line resonator (inter-digital electrodes), which acts as part of a transducer that can transform the expansion or contraction of the radial artery into an impedance variation. Measurements show that the impedance variation of the resonator due to changes in the radial artery causes a frequency change of up to 0.74 MHz in the free-running oscillator. For the PLL part, the frequency change can be transformed to a variation in dc voltage by injection of the modulated signal from the wrist pulse into a phase-locked oscillator. The variation of the loop-control voltage, in one cycle of the pulse, is approximately 10–15 mV peak-to-peak. Our sensor is demonstrated to be an effective noncontact and noninvasive scheme for wrist pulse detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.