Abstract
In this paper, we present a generalized vector-valued proximal point algorithm for convex and unconstrained multi-objective optimization problems. Our main contribution is the introduction of quasi-distance mappings in the regularized subproblems, which has important applications in the computer theory and economics, among others. By considering a certain class of quasi-distances, that are Lipschitz continuous and coercive in any of their arguments, we show that any sequence generated by our algorithm is bounded and its accumulation points are weak Pareto solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.