Abstract

In this paper, we propose a proximal parallel decomposition algorithm for solving the optimization problems where the objective function is the sum of m separable functions (i.e., they have no crossed variables), and the constraint set is the intersection of Cartesian products of some simple sets and a linear manifold. The m subproblems are solved simultaneously per iterations, which are sum of the decomposed subproblems of the augmented Lagrange function and a quadratic term. Hence our algorithm is named as the ‘proximal parallel splitting method’. We prove the global convergence of the proposed algorithm under some mild conditions that the underlying functions are convex and the solution set is nonempty. To make the subproblems easier, some linearized versions of the proposed algorithm are also presented, together with their global convergence analysis. Finally, some preliminary numerical results are reported to support the efficiency of the new algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.