Abstract
The DNA microarray (chip) has stimulated the development of scanning-proximal CCD detection system that offers 10-fold enhancement of sensitivity over conventional CCD lens-based scientific imaging systems with the added benefit of quickly scanning multiple microarrays of DNA probe/target complexes. DNA microarrays have emerged as powerful tools applicable to numerous high-throughput screening assays such as genotyping, gene expression analysis, gene mutation detection, DNA sequencing, and ELISA immunoassays. DNA microarray-based assays offer tremendous potential in both diagnostic and pharmaceutical applications due to their extreme versatility and miniaturized formats. Specifically, functional applications such as population-wide genetic screening, clinical diagnostics, and determining disease risk and drug toxicity are perfectly suited for microarray formats due to the small sample volume requirements, multiplexed parallel configurations, and susceptibility to customization. Novel supporting technologies such as the Proximal CCD Imager will be essential for detection and quantification of these highly miniaturized and multiplexed microarray assays to achieve both the throughput and cost reduction goals of these demanding medical applications. For example, typical high-throughput drug discovery screening assays often require 100,000 experiments to be conducted in a year. Employing microarrays for conducting these experiments, high-throughput instruments such as the Proximal CCD Imager are necessary to alleviate the bottlenecks associated with imaging and detection. Conventional imaging systems such as a confocal laser scanner or CCD lens-based imager currently take 1-10 minutes per microarray, thereby being impractical for such demanding applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.