Abstract

For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case when only inexact information about the function and subgradient values is available. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We examine the redistributed proximal bundle approach in this setting, and show that reasonable convergence properties are obtained. We further consider a battery of difficult nonsmooth nonconvex problems, made even more difficult by introducing inexactness in the available information. We verify that very satisfactory outcomes are obtained in our computational implementation of the inexact algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call