Abstract

Segmental tissues of glossiphoniid leeches arise from rostrocaudally arrayed columns (bandlets) of segmental founder cells (primary m, n, o, p, and q blast cells) which undergo stereotyped sublineages to generate identifiable subsets of definitive progeny. The bandlets lie at the surface of the embryo beneath the squamous epithelium of a transient embryonic covering called the provisional integument. This “provisional epithelium” derives from micromeres produced during the early cleavage divisions. Previous experiments have shown that the primary o and p blast cells constitute an equivalence group, i.e., are initially developmentally equipotent and undergo hierarchical interactions which cause them to assume distinct O and P fates. Here, we examine the role of the provisional epithelium in determining the fates of the underlying o and p blast cells. Experiments entailing the microinjection of individual micromeres with cell lineage tracers show that, at stages 7–8 of normal development, the eqithelium comprises coherent and relatively stereotyped domains derived from particular micromeres. Upon photoablating specific domains of epithelium labeled with photosensitizing lineage tracer, the normal assignment of O fates is disturbed; o blast cells divide symmetrically (as p blast cells do) and some supernumerary definitive progeny expressing P fates arise within the O lineage. We therefore conclude that the epithelium is essential for generation and/or reception of signal(s) by which the o and p blast cells' normally determine their fates. Finally, a new tracer substance, biotinylated fixable dextran (BFD), is described which was essential for this study by virtue of its superior resistance to photobleaching and which offers several other advantages as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call