Abstract

We apply the Batalin–Fradkin–Fradkina–Tyutin formalism to a prototypical second-class system, aiming to convert its constraints from second class to first class. The proposed system admits a consistent initial set of second-class constraints and an open potential function providing room for feasible applications to field theory and mechanical models. The constraints can be arbitrarily nonlinear, broadly generalizing previously known cases. We obtain a sufficient condition for which a simple closed expression for the Abelian converted constraints and modified involutive Hamiltonian can be achieved. As an explicit example, we discuss a spontaneous Lorentz symmetry breaking vectorial model, obtaining the full first-class Abelianized constraints in closed form and the corresponding involutive Hamiltonian.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call