Abstract

BackgroundLiquid fuel adulteration has several far-reaching impacts such as environmental pollution. A widespread practice is typically the adulteration of diesel oil by kerosene. The relatively cheap price of kerosene is probably the most important reason for its usage in illegal adulteration. Herein, we demonstrate the use of a prototype optical sensor for efficient tracking of adulterated diesel oil.MethodsIn this study, a prototype of an optical sensor for screening of fake diesel oil is proposed. The device exploits the phenomenon of laser light reflection from a fuel film over a roughened glass plate. The sensing mechanism of the devise is based on the refractive index mismatch between the glass and the fuel sample, and the wetting property of the fuel film over the roughened surface. For the sake of comparison, the refractive index for each of the fuel samples was measured at room temperature with the aid of an automatic temperature controlled Abbe table refractometer. The sensitivity of this prototype optical sensor was tested using training sets of diesel oil samples adulterated with low concentrations of kerosene.ResultsOriginally, a commercial handheld glossmeter, with a new innovation of a removable sensor head for liquid inspection is presented as a prototype sensor for the screening of possible adulteration of diesel oils with kerosene. The significant difference in the signal readings obtained from carefully prepared training sets of adulterated diesel oil composed of low percentages (5–15%) of kerosene has proven the high sensitivity of the developed sensor.ConclusionsThe ability to detect low concentrations of kerosene in diesel using the newly developed hand-held prototype sensor proves its high sensitivity compared to a high-accuracy Abbe refractometer. We envisage that this proposed sensor could, in the future, be made accessible to the authorities as a mobile fake fuel measurement unit.

Highlights

  • Liquid fuel adulteration has several far-reaching impacts such as environmental pollution

  • The prototype of a sensor that we suggest in this article is based on the idea that a roughened glass can be used for the identification of liquids, namely using the concept of refractive index matching between the roughened glass and the immersion liquid [19]

  • Before delving into the detailed description of the prototype sensor, we wish to remark that we have developed accurate liquid purity sensor, which is based on the use of a diffractive optical element (DOE) [21, 22] and laser beam transmission of a sample compartment

Read more

Summary

Introduction

Liquid fuel adulteration has several far-reaching impacts such as environmental pollution. For example, mixing of diesel oil by kerosene has several far-reaching impacts such as environmental pollution. Things become more problematic and challenging in an attempt to identify different grades of diesel and kerosene due to their similar spectral features in the NIR region. It is usually quite difficult or even impossible to differentiate these fuels from each other using only the simple transmittance data. The challenges involved in the use of NIR in tracking fuel adulteration is intensified in a typical practice where diesel oil is adulterated with about 10–30% of kerosene. Petrol/gasoline is adulterated, but typically it is much easier to screen adulterated petrol than diesel oil by optical measurement techniques, such as optical spectra

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call