Abstract
A proof-of-principle prototype of a volumetric 3D-displaying system is demonstrated by utilizing the photo-activated phosphorescence of two long-lived phosphorescent metal-porphyrins in dimethyl sulfoxide (DMSO), a photochemically deoxygenating solvent. The first phosphorescent sensitizer, Pt(TPBP), absorbs a light beam with a wavelength of 635 nm, and the sensitized singlet oxygen is scavenged by DMSO. The second phosphorescent emitter, Pt(OEP), absorbs a light beam with a wavelength of 532 nm and visibly phosphoresces only in the deoxygenated zone generated by the first sensitizer. The phosphorescent voxels, 3D images, and animations are well-defined by the intersections of the 635-nm and 532-nm light beams that are programmable by tuning of the excitation-power densities, the beam shapes, and the kinetics. As a pivotal selection rule for the phosphorescent molecular couple used in this 3D-displaying system, their absorptions and emissions must be orthogonal to each other, so that they can be excited and addressed independently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.