Abstract

BackgroundWith the accumulating omics data, an efficient and time-saving transient assay to express target genes is desired. Mesophyll protoplasts, maintaining most stress-physiological responses and cellular activities as intact plants, offer an alternative transient assay to study target genes’ effects on heat and oxidative stress responses.ResultsIn this study, a perennial ryegrass (Loliumperenne L.) mesophyll protoplast-based assay was established to effectively over- or down-regulate target genes. The relative expression levels of the target genes could be quantified using RT-qPCR, and the effects of heat and H2O2-induced oxidative stress on protoplasts’ viability could be quantitatively measured. The practicality of the assay was demonstrated by identifying the potential thermos-sensor genes LpTT3.1/LpTT3.2 in ryegrass that over-expressing these genes significantly altered protoplasts’ viability rates after heat stress.ConclusionThis protoplast-based rapid stress regulatory gene identification assay was briefed as ‘PRIDA’ that will complement the stable genetic transformation studies to rapidly identify candidate stress-regulatory genes in perennial ryegrass and other grass species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call