Abstract

We have measured the solid state nuclear magnetic resonance (NMR) 1H spin-lattice relaxation rate from 93 to 340 K at NMR frequencies of 8.5 and 53 MHz in 5- t-butyl-4-hydroxy-2-methylphenyl sulfide. We have also determined the molecular and crystal structures from X-ray diffraction experiments. The relaxation is caused by methyl and t-butyl group rotation modulating the spin–spin interactions and we relate the NMR dynamical parameters to the structure. A successful fit of the data requires that the 2-methyl groups are rotating fast (on the NMR time scale) even at the lowest temperatures employed. The rotational barrier for the two out-of-plane methyl groups in the t-butyl groups is 14.3±2.7 kJ mol −1 and the rotational barrier for the t-butyl groups and their in-plane methyl groups is 24.0±4.6 kJ mol −1. The uncertainties account for the uncertainties associated with the relationship between the observed NMR activation energy and a model-independent barrier, as well as the experimental uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.