Abstract

High-resolution proton nuclear magnetic resonance spectroscopy and nuclear Overhauser effects for the low-field exchangeable proton resonances of human normal adult hemoglobin in aqueous solvents are being used to confirm and extend the assignments of these resonances to specific protons at the intersubunit interfaces of the molecule. Most of these exchangeable proton resonances of human normal adult hemoglobin have been found to be absent in the spectra of isolated α or β subunits. This finding indicates that they are specific spectral markers for the quaternary structure of the hemoglobin tetramer. Based on the nuclear Overhauser effect results, we have assigned the exchangeable proton resonance at +7.4 ppm downfield from H 2O to the hydrogen-bonded proton between α103(G10)His and β108(G10)Asn at the α 1 β 1 interface. The nuclear Overhauser effect results have also confirmed the assignments of the exchangeable proton resonances at +9.4 and +8.2 ppm downfield from H 2O previously proposed by workers in this laboratory based on a comparison of human normal adult hemoglobin and appropriate mutant hemoglobins. This independent confirmation of previously proposed assignments is necessary in view of the possible long-range conformational effects of single amino-acid substitutions in mutant hemoglobin molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.