Abstract

Spin-echo NMR spectroscopy was shown to be a reliable technique for the monitoring of the in situ cleavage of gamma-Glu-Ala by gamma-glutamyl-amino acid cyclotransferase in whole erythrocytes and hemolysates. Of particular importance was the difference in chemical shifts between peptide resonances and those of the constituent amino acids. Using lysates of varying dilution, it was shown that the specific activity of the enzyme was not concentration-dependent, thus suggesting a lack of cytosolic low-molecular-weight-effectors or enzyme dissociation. Furthermore, the initial velocities of the reaction as a function of substrate concentration obeyed Michaelis-Menten kinetics with a Km = 2.0 +/- 0.3 mmol/l and Vmax = 137 +/- 7 mmol/h/l of cell water in 1H2O medium. Similar analysis in 2H2O medium revealed a solvent kinetic isotope effect of 1.9 +/- 0.4 at low substrate concentrations. The implications of this observation for the mechanism of the reaction are discussed. Cleavage of the peptide by a suspension of intact erythrocytes was at a rate 300 times less than the corresponding lysate flux, thus indicating the rate limitation by transport in the coupled system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call