Abstract

The 1H nuclear magnetic resonance spin-lattice and spin–spin relaxation rate enhancements induced by the gadolinium(III) ion were measured in solutions of glycine, alanine, and sodium lactate containing different amounts of Gd(III). The proton relaxation rates in the Gd(III) complexes were calculated from these data, and were used to calculate metal–hydrogen atom distances. Comparison of these data with corresponding distances calculated from literature X-ray crystallographic data for model compounds shows that in the two amino acid complexes the Gd(III) ion is coordinated in a four-membered ring through the two oxygen atoms of the carboxylate group. By contrast, in the lactate complex coordination is via a five-membered ring involving one oxygen atom of the carboxylate group and the α-hydroxyl oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.