Abstract

Transcranial photobiomodulation is a potential innovative noninvasive therapeutic approach for improving brain bioenergetics, brain function in a wide range of neurological and psychiatric disorders, and memory enhancement in age-related cognitive decline and neurodegenerative diseases. We describe a laboratory protocol for transcranial photobiomodulation therapy (PBMT) in mice. Aged BALB/c mice (18 months old) are treated with a 660 nm laser transcranially, once daily for 2 weeks. Laser transmittance data shows that approximately 1% of the incident red light on the scalp reaches a 1 mm depth from the cortical surface, penetrating the dorsal hippocampus. Treatment outcomes are assessed by two methods: a Barnes maze test, which is a hippocampus-dependent spatial learning and memory task evaluation, and measuring hippocampal ATP levels, which is used as a bioenergetics index. The results from the Barnes task show an enhancement of the spatial memory in laser-treated aged mice when compared with age-matched controls. Biochemical analysis after laser treatment indicates increased hippocampal ATP levels. We postulate that the enhancement of memory performance is potentially due to an improvement in hippocampal energy metabolism induced by the red laser treatment. The observations in mice could be extended to other animal models since this protocol could potentially be adapted to other species frequently used in translational neuroscience, such as rabbit, cat, dog, or monkey. Transcranial photobiomodulation is a safe and cost-effective modality which may be a promising therapeutic approach in age-related cognitive impairment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call