Abstract

Cigarette smoking is the major cause of chronic inflammatory diseases such as chronic obstructive pulmonary disease (COPD). It is paramount to develop pharmacological interventions and delivery strategies against the cigarette smoke (CS) associated oxidative stress in COPD. This study in Wistar rats examined cysteamine in nanoemulsions to counteract the CS distressed microenvironment. In vivo, 28 days of CS and 15 days of cysteamine nanoemulsions treatment starting on 29th day consisting of oral and inhalation routes were established in Wistar rats. In addition, we conducted inflammatory and epithelial-to-mesenchymal transition (EMT) studies in vitro in human bronchial epithelial cell lines (BEAS2B) using 5% CS extract. Inflammatory and anti-inflammatory markers, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, IL-8, IL-10, and IL-13, have been quantified in bronchoalveolar lavage fluid (BALF) to evaluate the effects of the cysteamine nanoemulsions in normalizing the diseased condition. Histopathological analysis of the alveoli and the trachea showed the distorted, lung parenchyma and ciliated epithelial barrier, respectively. To obtain mechanistic insights into the CS COPD rat model, "shotgun" proteomics of the lung tissues have been carried out using high-resolution mass spectrometry wherein genes such as ABI1, PPP3CA, PSMA2, FBLN5, ACTG1, CSNK2A1, and ECM1 exhibited significant differences across all the groups. Pathway analysis showed autophagy, signaling by receptor tyrosine kinase, cytokine signaling in immune system, extracellular matrix organization, and hemostasis, as the major contributing pathways across all the studied groups. This work offers new preclinical findings on how cysteamine taken orally or inhaled can combat CS-induced oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call