Abstract

ObjectiveThis study investigated the protective effect of oxymatrine (OMT) on carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice and explored its possible targets and signaling pathways. MethodsMale BALB/c mice were randomly divided into blank control, model, positive drug (silymarin), and OMT administration groups, respectively, with 10 mice in each group. Hepatic fibrosis was induced in mice using CCl4 and the corresponding drug intervention was given. After the final administration, ultrasonography tests, blood tests, and analysis of liver differential proteins using tandem mass tag labeling and liquid chromatography-mass spectrometry were performed. ResultsOMT intervention ameliorated CCl4-induced hepatic fibrosis in mice, significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels, down-regulated the expression of fibrosis factors, such as type IV collagen IV, laminin, type III procollagen III, and alpha-smooth muscle actin, and improved liver function. The results of the proteomic analysis showed that the intervention of OMT significantly down-regulated 130 out of 440 up-regulated proteins and up-regulated 70 out of 294 down-regulated proteins, primarily involving the transient receptor potential (TRP) signaling pathway, the peroxisome proliferator-activated receptors (PPAR) signaling pathway, and the metabolic pathway of arachidonic acid. The main differential proteins involved were Cyp2c37, SCP-2, and Tbxas1. In addition, OMT intervention significantly reversed the expression of sterol carrier protein-2 (SCP2) and upregulated the expression of peroxisome proliferator-activated receptor gamma, Cyp2c37, and transient receptor potential cation channel subfamily V member 1 proteins. ConclusionOMT inhibited the proliferative capacity of hepatic stellate cells, induced apoptotic properties, and suppressed the development of fibrosis by elevating Cyp2c37/TRP signaling axis activity and upregulating PPAR pathway activity by inhibiting SCP2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.