Abstract

It has recently been established that the use of proteomics can be a useful tool in the field of ecotoxicology. Despite the fact that the mussel Dreissena polymorpha is a valuable bioindicator for freshwater ecosystems, the application of a proteomic approach with this organism has not been deeply investigated. To this end, several zebra mussel specimens were subjected to a 7-day exposure of two different concentrations (0.1 and 2 μg L −1) of the model pollutant benzo[α]pyrene (B[α]P). Changes in protein expression profiles were investigated in gill cytosolic fractions from control/exposed male and female mussels using 2-DE electrophoresis. B[α]P bioaccumulation in mussel soft tissue was also assessed to validate exposure to the selected chemical. We evaluated overall changes in expression profiles for 28 proteins in exposed mussels, 16 and 12 of which were, respectively, over- and under-expressed. Surprisingly, the comparative analysis of protein data sets showed no proteins that varied commonly between the two different B[α]P concentrations. Spots of interest were manually excised and analysed by MALDI-TOF/TOF mass spectrometry. The most significant proteins that were identified as altered were related to oxidative stress, signal transduction, cellular structure and metabolism. This preliminary study indicates the feasibility of a proteomic approach with the freshwater mussel D. polymorpha and provides a starting point for similar investigations. Our results confirm the need to increase the number of invertebrate proteomic studies in order to increase the following: their representation in databases and the successful identification of their most relevant proteins. Finally, additional studies investigating the role of gender and protein modulation are warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call