Abstract

Dinoflagellate chromatin is unique among eukaryotes, as the chromosomes are permanently condensed in a liquid crystal state instead of being packed in nucleosomes. However, how it is organized is still an unsolved mystery, in part due to the lack of a comprehensive catalog of dinoflagellate nuclear proteins. Here, we report the results of CHromatin Enrichment for Proteomics (CHEP) followed by shotgun mass spectrometry sequencing of the chromatin-associated proteins from the dinoflagellate Lingulodinum polyedra. Our analysis identified proteins involved in DNA replication and repair, transcription, and mRNA splicing, and showed a low level of contamination by proteins from other organelles. A limited number of proteins containing DNA-binding domains were found, consistent with the lack of diversity of these proteins in dinoflagellate transcriptomes. However, the number of proteins containing RNA-binding domains was unexpectedly high supporting a potential role for this type of protein in mediating gene expression and chromatin organization. We also identified a number of proteins involved in chromosome condensation and cell cycle progression as well as a single histone protein (H4). Our results provide the first detailed look at the nuclear proteins associated with the unusual chromatin structure of dinoflagellate nuclei and provide important insights into the biochemical basis of its structure and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.