Abstract

The ubiquitin-related protein SUMO-1 is covalently attached to proteins by SUMO-1 ligases. We have performed a proteome-wide analysis of sumoylated substrate proteins in yeast. Employing the powerful affinity purification of Protein A-Smt3 (Smt3 is the yeast homologue of SUMO-1) from yeast lysates in combination with tandem liquid chromatography mass spectrometry, we have isolated potential Smt3-carrying substrate proteins involved in DNA replication and repair, chromatin remodeling, transcription activation, Pol-I, Pol-II, and Pol-III transcription, 5' pre-mRNA capping, 3' pre-mRNA processing, proteasome function, and tubulin folding. Employing tandem affinity purifications or a rapid biochemical assay referred to as "SUMO fingerprint," we showed that several subunits of RNA polymerases I, II, and III, members of the transcription repression and chromatin remodeling machineries previously not known to be sumoylated, are modified by SUMO-1. Thus, the identification of a broad range of SUMO-1 substrate proteins is expected to lead to further insight into the regulatory aspects of sumoylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call