Abstract

The balance of hypertrophy and atrophy is critical for the adaptation of cardiac and skeletal muscle mass to the demands of the environment and when deregulated can cause disease. Here we have used a proteomics approach to generate protein reference maps for the mouse heart and skeletal muscle, which provide a molecular basis for future functional and pathophysiological studies. The reference map provides information on molecular mass, pI, and literature data on function and localization, to facilitate the identification of proteins based on their migration in 2-D gels. In total, we have identified 351 cardiac and 284 skeletal muscle protein spots, representing 249 and 214 different proteins, respectively. In addition, we have visualized the protein pattern of mouse heart and skeletal muscle at defined conditions comparing knockout (KO) animals deficient in the sarcomeric protein titin (a genetic atrophy model) and control littermates. We found 20 proteins that were differently expressed linking titin's kinase region to the heat-shock- and proteasomal stress response. Taken together, the established reference maps should provide a suitable tool to relate protein expression and PTM to cardiovascular and skeletal muscle disease using the mouse as an animal model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.