Abstract

Photodynamic therapy typically employs photo-triggered photosensitizers to generate reactive oxygen species to destroy cancer cells. However, the therapeutic effect of photodynamic therapy is often limited owing to the ultrashort diffusion distance of reactive oxygen species and easy efflux of photosensitizers. Herein, we design and synthesize a protein-targeted molecular photosensitizer for highly efficient photodynamic therapy. The designed photosensitizer can covalently bind with the sulfhydryl groups of intracellular proteins to achieve the protein targeting. Under irradiated with near infrared laser, the photosensitizer was locally activated, and the produced reactive oxygen species directly destroy intracellular bioactive proteins, causing cell dysfunction and ultimately inducing cell apoptosis. Significantly, the leakage of molecular photosensitizer is effectually avoided due to the protein targeting. In vivo experimental results indicated that the effect of treatment was efficiently enhanced with the protein-targeted strategy. This work can offer new insights for designing protein-based therapeutic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call