Abstract
We have developed a nonredundant protein-RNA docking benchmark dataset, which is derived from the available bound and unbound structures in the Protein Data Bank involving polypeptide and nucleic acid chains. It consists of nine unbound-unbound cases where both the protein and the RNA are available in the free form. The other 36 cases are of unbound-bound type where only the protein is available in the free form. The conformational change upon complex formation is calculated by a distance matrix alignment method, and based on that, complexes are classified into rigid, semi-flexible, and full flexible. Although in the rigid body category, no significant conformational change accompanies complex formation, the fully flexible test cases show large domain movements, RNA base flips, etc. The benchmark covers four major groups of RNA, namely, t-RNA, ribosomal RNA, duplex RNA, and single-stranded RNA. We find that RNA is generally more flexible than the protein in the complexes, and the interface region is as flexible as the molecule as a whole. The structural diversity of the complexes in the benchmark set should provide a common ground for the development and comparison of the protein-RNA docking methods. The benchmark can be freely downloaded from the internet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.