Abstract

Tracing heavy metals is a crucial issue in both environmental and medical samples. In this work, a sensing biomolecule, the cyanobacterial C‐phycocyanin (CPC), is integrated into a nanocellulose matrix, and with this, a biosensor for copper ions is developed. The assembly of CPC‐functionalized nanocellulose into a red‐fluorescent, copper‐sensitive hybrid film “CySense”, enhances protein stability and facilitates the reuse and the regeneration of the sensor for several cycles over 7 days. CySense is suitable for the analysis of complex medical samples such as human serum filtrate. The reported biosensor reliably detects copper ion contents with a lower detection limit of 200 × 10−9mand an IC50 of 4.9 × 10−6mas changes in fluorescence emission intensity that can be measured with a fluorimeter or a microarray laser scanner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.