Abstract

We provide a detailed overview of a novel high-throughput protein microarray assay for the determination of anti-Clostridium difficile antibody levels in human sera and in separate preparations of polyclonal intravenous immunoglobulin (IVIg). The protocol describes the methodological steps involved in sample preparation, printing of arrays, assay procedure, and data analysis. In addition, this protocol could be further developed to incorporate diverse clinical samples including plasma and cell culture supernatants. We show how protein microarray can be used to determine a combination of isotype (IgG, IgA, IgM), subclass (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2), and strain-specific antibodies to highly purified whole C. difficile toxins A and B (toxinotype 0, strain VPI 10463, ribotype 087), toxin B from a C. difficile toxin-B-only expressing strain (CCUG 20309), a precursor form of a B fragment of binary toxin, pCDTb, ribotype-specific whole surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). During the experiment, microarrays are probed with sera from individuals with C. difficile infection (CDI), individuals with cystic fibrosis (CF) without diarrhea, healthy controls (HC), and from individuals pre- and post-IVIg therapy for the treatment of CDI, combined immunodeficiency disorder, and chronic inflammatory demyelinating polyradiculopathy. We encounter significant differences in toxin neutralization efficacies and multi-isotype specific antibody levels between patient groups, commercial preparations of IVIg, and sera before and following IVIg administration. Also, there is a significant correlation between microarray and enzyme-linked immunosorbent assay (ELISA) for antitoxin IgG levels in serum samples. These results suggest that microarray could become a promising tool for profiling antibody responses to C.difficile antigens in vaccinated or infected humans. With further refinement of antigen panels and a reduction in production costs, we anticipate that microarray technology may help optimize and select the most clinically useful immunotherapies for C. difficile infection in a patient-specific manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.