Abstract
Plasma membrane vesicles isolated from HeLa cells grown in suspension culture contain a protein disulfide-thiol interchange (protein disulfide-like) activity. The activity was estimated from the restoration of activity to inactive (scrambled) pancreatic RNAase. RNAase activity was measured either by hydrolysis of cCMP or by a decrease in acid precipitable yeast RNA. The ability of plasma membrane vesicles to restore activity to inactive (scrambled) pancreatic ribonuclease was inhibited by the antitumor sulfonylurea N-(4-methylphenylsulfonyl)- N′-(4-chlorophenyl)urea (LY181984). The activity correlated with that of a cyanide-resistant NADH oxidase also associated with the plasma membrane vesicles that exhibited a similar pattern of drug response. The activity was stimulated by reduced glutathione and inhibited by oxidized glutathione but did not depend on either for activity. The antitumor sulfonylurea-inhibited activity was greatest in the presence of reduced glutathione and least in the presence of oxidized glutathione. The antitumor sulfonylurea-inhibited activity was unaffected by a monoclonal antibody to protein disulfide isomerase. Also the antitumor sulfonylurea-inhibited activity was unaffected by peptide antisera to the consensus active site sequence of protein disulfide isomerase. Thus the antitumor sulfonylurea-inhibited activity appeared to reside with a novel cell surface protein capable of oxidation of both NADH and protein thiols and of carrying out a protein disulfide isomerase-like protein disulfide-thiol interchange activity in the absence of NADH or other external reductants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.