Abstract

This paper elucidates challenges in integrating different classes of proteins into a microsystem and presents an electrochemical array strategy for heterogeneous protein-based biosensors. The overlapping requirements and limitations imposed by biointerface formation, electrochemical characterization, and microsystem fabrication are identified. A planar electrode array is presented that synergistically resolves these requirements using thin film Au and Ag/AgCl electrodes on a dielectric substrate. Using molecular self-assembly, electrodes were modified by nano-structures of two diverse proteins, alkali ion-channel protein and alcohol dehydrogenase enzyme. Electrochemical impedance spectroscopy and cyclic voltammetry measurements were performed to characterize sensor response to alkali ion and alcohol, respectively. This work demonstrates the viability of the electrochemical microsystem platform for heterogeneous protein-based biosensor interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.