Abstract
CONTEXT: Ultrasound is emerging as a novel treatment agent for cancer. The advantage of using ultrasound is that it is not an electromagnetic radiation; hence, it does not produce the undesired harmful effects encountered through the repeated use of electromagnetic radiation. AIMS: The present study was aimed to evaluate the therapeutic potential of ultrasound in 7,12-dimethyl benz (a) anthracene (DMBA)-induced sarcoma in rats. SETTINGS AND DESIGN: Forty female Wistar rats were used in the experimental study. They were allocated into four groups. DMBA was used to induce sarcoma in 20 rats. Therapeutic ultrasound was applied at 2.5 W/cm2 for 10 min (continuous mode) to 10 sarcoma tumor-bearing rats and normal 10 rats. SUBJECTS AND METHODS: DMBA was used to induce sarcoma in rats. Body weight, tumor weight, and serum enzymes were determined following treatment with therapeutic ultrasound (Chattanooga Group, Hixson,TN USA (Model: Intelect® Mobile Combo Model No. 2778). STATISTICAL ANALYSIS USED: Statistical analysis was performed using SPSS (SPSS Inc., Chicago, IL, USA) statistical package. The results were expressed as mean, standard error of mean (SEM). The one-way analysis of variance followed by post hoc test least significant difference was used to correlate the difference between the variables. Values were considered statistically significant if P RESULTS: There were significant increases on the body weight and tumor weight of treated rats. The increased activities of serum pathophysiological enzymes aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, ACP, and lactate dehydrogenase of ultrasound-treated rats were significantly (P CONCLUSIONS: The results of the present study indicate that ultrasound significantly suppresses DMBA-induced sarcoma in rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physiotherapy - The Journal of Indian Association of Physiotherapists
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.