Abstract
The purpose of this study was to determine whether qualitative and quantitative measures obtained with pulsed arterial spin-labeling (PASL) and apparent diffusion coefficients (ADC) improve glioma grading compared with conventional MR images. We prospectively performed 2 qualitative consensus reviews in 33 suspected gliomas: 1) conventional MR images alone and 2) conventional MR images with PASL and ADC. To calculate the diagnostic performance parameters of PASL and ADC, we used a qualitative scoring system on the basis of the tumor perfusion signal intensity (sTP) and visual ADC scoring (sADC). We then analyzed quantitative regions of interest and calculated the ratio of the maximum tumor perfusion signal intensity (rTPmax) and the minimum ADC value (mADC). Two observers diagnosed accurate tumor grades in 23 of 33 (70%) lesions in the first review and in 29 of 33 (88%) lesions in the second review. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for determining a glioma grading by using combined sTP and sADC scoring were 90.9, 90.9, 95.2, and 83.3%, respectively. Statistical analysis gave a threshold value of 1.24 for rTPmax and 0.98 x 10(-3) mm/s(2) for mADC to provide a sensitivity, specificity, PPV, and NPV of 95.5, 81.8, 91.3, and 90.1% and 90.9, 81.8, 90.9, and 81.8%, respectively. The receiver operator characteristic curve analyses showed no significant difference between the quantitative and combined qualitative parameters. PASL and ADC significantly improve the diagnostic accuracy of glioma grading compared with conventional imaging.
Highlights
AND PURPOSE: The purpose of this study was to determine whether qualitative and quantitative measures obtained with pulsed arterial spin-labeling (PASL) and apparent diffusion coefficients (ADC) improve glioma grading compared with conventional MR images
PASL and ADC significantly improve the diagnostic accuracy of glioma grading compared with conventional imaging
Diagnostic Performance of PASL and ADC for Grading of Gliomas The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for determination of glioma grading with sTP were 86.4%, 90.9%, 95.0%, and 76.9%, respectively
Summary
The purpose of this study was to determine whether qualitative and quantitative measures obtained with pulsed arterial spin-labeling (PASL) and apparent diffusion coefficients (ADC) improve glioma grading compared with conventional MR images. The purpose of this study was to determine if qualitative and quantitative measures from PASL and ADC improve the grading of gliomas compared with conventional MR images
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.