Abstract

Data on causes of community-onset bloodstream infection in Myanmar are scarce. We aimed to identify etiological agents of bloodstream infections and patterns of antimicrobial resistance among febrile adolescents and adults attending Yangon General Hospital (YGH), Yangon, Myanmar. We recruited patients ≥12 years old with fever ≥38°C who attended YGH from 5 October 2015 through 4 October 2016. A standardized clinical history and physical examination was performed. Provisional diagnoses and vital status at discharge was recorded. Blood was collected for culture, bloodstream isolates were identified, and antimicrobial susceptibility testing was performed. Using whole-genome sequencing, we identified antimicrobial resistance mechanisms of Enterobacteriaceae and sequence types of Enterobacteriaceae and Streptococcus agalactiae. Among 947 participants, 90 (9.5%) had bloodstream infections (BSI) of which 82 (91.1%) were of community-onset. Of 91 pathogens isolated from 90 positive blood cultures, we identified 43 (47.3%) Salmonella enterica including 33 (76.7%) serovar Typhi and 10 (23.3%) serovar Paratyphi A; 20 (22.0%) Escherichia coli; 7 (7.7%) Klebsiella pneumoniae; 6 (6.6%), Staphylococcus aureus; 4 (4.4%) yeasts; and 1 (1.1%) each of Burkholderia pseudomallei and Streptococcus agalactiae. Of 70 Enterobacteriaceae, 62 (88.6%) were fluoroquinolone-resistant. Among 27 E. coli and K. pneumoniae, 18 (66.6%) were extended-spectrum beta-lactamase (ESBL)-producers, and 1 (3.7%) each were AmpC beta-lactamase- and carbapenemase-producers. Fluoroquinolone resistance was associated predominantly with mutations in the quinolone resistance-determining region. blaCTX-M-15 expression was common among ESBL-producers. Methicillin-resistant S. aureus was not detected. Fluoroquinolone-resistant, but not multiple drug-resistant, typhoidal S. enterica was the leading cause of community-onset BSI at a tertiary hospital in Yangon, Myanmar. Fluoroquinolone and extended-spectrum cephalosporin resistance was common among other Enterobactericeae. Our findings inform empiric management of severe febrile illness in Yangon and indicate that measures to prevent and control enteric fever are warranted. We suggest ongoing monitoring and efforts to mitigate antimicrobial resistance among community-onset pathogens.

Highlights

  • Fever is a common reason for seeking healthcare in South-East Asia [1, 2]

  • Data on community-onset Bloodstream infection (BSI) are few for some countries in Asia, including Myanmar

  • We found that almost 10% of participants had a bloodstream infection, and that Salmonella enterica serovars Typhi and Paratyphi A were the most common pathogens

Read more

Summary

Introduction

Bloodstream infection (BSI) is an important cause of severe febrile illness [3] and requires urgent and appropriate antimicrobial therapy to avert death [4]. A 2012 systematic review of community-acquired bloodstream infections in South and South-East Asia identified just 17 studies [5], and only one from Myanmar [6], indicating major data gaps in the region. Laboratory records frequently lack sufficient detail to make the epidemiologically important distinction between hospital-acquired and community-onset infections. Antimicrobial resistance is a growing problem globally and especially in South and South-East Asia among hospital-acquired infections [8]. Community-acquired pathogens with concerning patterns of antimicrobial resistance, including extended-spectrum cephalosporinresistant S. enterica Typhi [9] and other Enterobacteriaceae [10,11,12], are increasingly identified

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call