Abstract
Plasmodium falciparum (P. falciparum) parasites still cause lethal infections worldwide, especially in Africa (https://www.who.int/publications/i/item/world-malaria-report-2019). During P. falciparum blood-stage infections in humans, low-density lipoprotein, high-density lipoprotein and cholesterol levels in the blood become low. Because P. falciparum lacks a de novo cholesterol synthesis pathway, it must import cholesterol from the surrounding environment. However, the origin of the cholesterol and how it is taken up by the parasite across the multiple membranes that surround it is not fully understood. To answer this, we used a cholesterol synthesis inhibiter (simvastatin), a cholesterol transport inhibitor (ezetimibe), and an activating ligand of the peroxisome proliferator-activated receptor α, called ciprofibrate, to investigate the effects of these agents on the intraerythrocytic growth of P. falciparum, both with and without HepG2 cells as the lipoprotein feeders. P. falciparum growth was inhibited in the presence of ezetimibe, but ezetimibe was not very effective at inhibiting P. falciparum growth when used in the co-culture system, unlike simvastatin, which strongly promoted parasite growth in this system. Ezetimibe is known to inhibit cholesterol absorption by blocking the activity of Niemann-Pick C1 like 1 (NPC1L1) protein, and simvastatin is known to enhance NPC1L1 expression in the human body's small intestine. Collectively, our results support the possibility that cholesterol import by P. falciparum involves hepatocytes, and cholesterol uptake into the parasite occurs via NPC1L1 protein or an NPC1L1 homolog during the erythrocytic stages of the P. falciparum lifecycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.