Abstract

Background and purpose Short femoral stems have been introduced in total hip arthroplasty in order to save proximal bone stock. We hypothesized that a short stem preserves periprosthetic bone mineral density (BMD) and provides good primary stability.Methods We carried out a prospective cohort study of 30 patients receiving the collum femoris-preserving (CFP) stem. Preoperative total hip BMD and postoperative periprosthetic BMD in Gruen zones 1–7 were investigated by dual-energy x-ray absorptiometry (DXA), stem migration was analyzed by radiostereometric analysis (RSA), and the Harris hip score (HHS) was determined.Results 2 patients were excluded intraoperatively and 1 patient was revised due to a deep infection, leaving 27 patients for analysis. The mean HHS increased from 49 (24–79) preoperatively to 99 (92–100) after 2 years. DXA after 1 year showed substantial loss of BMD in Gruen zone 7 (–31%), zone 6 (–19%), and zone 2 (–13%, p < 0.001) compared to baseline BMD determined immediately postoperatively. The bone loss in these regions did not recover after 2 years, whereas the more moderate bone loss in Gruen zones 1, 3, and 5 partially recovered. There was a correlation between low preoperative total hip BMD and a higher amount of bone loss in Gruen zones 2, 6 and 7. RSA showed minor micromotion of the stem: mean subsidence was 0.13 (95% CI: –0.28 to 0.01) mm and mean rotation around the longitudinal axis was 0.01º (95% CI: –0.1 to 0.39) after 2 years.Interpretation We conclude that substantial loss in proximal periprosthetic BMD cannot be prevented by the use of a novel type of short, curved stem, and forces appear to be transmitted distally. However, the stems showed very small migration—a characteristic of stable uncemented implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call