Abstract

BackgroundShiga toxin-producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are enteric pathogens of public health concern worldwide, causing life-threatening diseases. Cattle are considered the principal hosts and have been shown to be a source of infection for both foodborne and environmental outbreaks in humans. The aims of this study were to investigate risk factors associated with sporadic STEC infections in humans in New Zealand and to provide epidemiological information about the source and exposure pathways.MethodsDuring a national prospective case–control study from July 2011 to July 2012, any confirmed case of STEC infection notified to regional public health units, together with a random selection of controls intended to be representative of the national demography, were interviewed for risk factor evaluation. Isolates from each case were genotyped using pulsed-field gel electrophoresis (PFGE) and Shiga toxin-encoding bacteriophage insertion (SBI) typing.ResultsQuestionnaire data from 113 eligible cases and 506 controls were analysed using multivariate logistic regression. Statistically significant animal and environmental risk factors for human STEC infections were identified, notably 'Cattle livestock present in meshblock’ (the smallest geographical unit) (odds ratio 1.89, 95% CI 1.04–3.42), 'Contact with animal manure’ (OR 2.09, 95% CI 1.12–3.90), and 'Contact with recreational waters’ (OR 2.95, 95% CI 1.30–6.70). No food-associated risk factors were identified as sources of STEC infection. E. coli O157:H7 caused 100/113 (88.5%) of clinical STEC infections in this study, and 97/100 isolates were available for molecular analysis. PFGE profiles of isolates revealed three distinctive clusters of genotypes, and these were strongly correlated with SBI type. The variable 'Island of residence’ (North or South Island of New Zealand) was significantly associated with PFGE genotype (p = 0.012).ConclusionsOur findings implicate environmental and animal contact, but not food, as significant exposure pathways for sporadic STEC infections in humans in New Zealand. Risk factors associated with beef and dairy cattle suggest that ruminants are the most important sources of STEC infection. Notably, outbreaks of STEC infections are rare in New Zealand and this further suggests that food is not a significant exposure pathway.

Highlights

  • Shiga toxin-producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are enteric pathogens of public health concern worldwide, causing life-threatening diseases

  • A case was defined as a patient with (i) clinical symptoms of diarrhoea and/or haemolytic uraemic syndrome and/or thrombotic thrombocytopaenia purpura, (ii) an onset of clinical disease at a maximum of two weeks prior to being reported to a public health units (PHU), (iii) an infection most likely acquired in New Zealand, (iv) confirmed by isolation of STEC from a clinical specimen, and (v) the primary STEC infection in a household

  • Study cases were interviewed by phone or in person by trained PHU staff using a questionnaire on multiple risk factors potentially associated with STEC infections

Read more

Summary

Introduction

Shiga toxin-producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are enteric pathogens of public health concern worldwide, causing life-threatening diseases. Shiga toxin-producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are pathogens of public health concern worldwide. They can cause severe outbreaks of gastrointestinal illness with clinical symptoms ranging from diarrhoea and haemorrhagic colitis to the life-threatening haemolytic uraemic syndrome [1]. Cattle, are considered to be an important reservoir of STEC, shedding the pathogen via faeces [2,3,4], and are a primary source of foodborne and environmental outbreaks of STEC in humans [5,6]. Exposures to farming environments have been reported as risk factors of sporadic STEC infections, for young children [8,21]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call