Abstract
The liar and kindred paradoxes show that we can derive contradictions if our language possesses sentences lending themselves to paradox and we reason classically from schema (T) about truth: Sis true iffp, where the letter p is to be replaced with a sentence and the letter S with a name of that sentence. This article presents a theory of truth that keeps (T) at the expense of classical logic. The theory is couched in a language that possesses paradoxical sentences. It incorporates all the instances of the analogue of (T) for that language and also includes other platitudes about truth. The theory avoids contradiction because its logical framework is an appropriately constructed nonclassical propositional logic. The logic and the theory are different from others that have been proposed for keeping (T), and the methods used in the main proofs are novel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.