Abstract
Primarily guided with the idea to express zero-time transitions by means of temporal propositional language, we have developed a temporal logic where the time flow is isomorphic to ordinal ω2 (concatenation of ω copies of ω). If we think of ω2 as lexicographically ordered ω×ω, then any particular zero-time transition can be represented by states whose indices are all elements of some {n}×ω. In order to express non-infinitesimal transitions, we have introduced a new unary temporal operator [ω] (ω-jump), whose effect on the time flow is the same as the effect of α↦α+ω in ω2. In terms of lexicographically ordered ω×ω, [ω]ϕ is satisfied in 〈i,j〉-th time instant iff ϕ is satisfied in 〈i+1,0〉-th time instant. Moreover, in order to formally capture the natural semantics of the until operator U, we have introduced a local variant u of the until operator. More precisely, ϕuψ is satisfied in 〈i,j〉-th time instant iff ψ is satisfied in 〈i,j+k〉-th time instant for some nonnegative integer k, and ϕ is satisfied in 〈i,j+l〉-th time instant for all 0≤l<k. As in many of our previous publications, the leitmotif is the usage of infinitary inference rules in order to achieve the strong completeness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.