Abstract

The purpose of this study was 3-fold: (a) to determine if the mathematical model used to estimate the electromyographic fatigue threshold (EMGFT) and physical working capacity at the heart rate threshold (PWCHRT) could be applied to VO2 measurements, (b) to propose a new fatigue threshold called the physical working capacity at the oxygen consumption threshold (PWCVO2), and (c) to compare the power output at the PWCVO2 to those of the EMGFT, PWCHRT, and ventilatory threshold (VT). Fifteen adult volunteers (mean age +/- SD = 22 +/- 2 years) performed a maximal cycle ergometer test to determine VO2peak and VT as well as 4 8-minute submaximal work bouts for the determination of PWCHRT, EMGFT, and PWCVO2. A 1-way repeated measures analysis of variance (ANOVA) with Tukey post hoc comparison indicated that PWCHRT (84 +/- 36) was significantly (p < 0.05) less than EMGFT (126 +/- 51), but there were no differences for PWCVO2 (111 +/- 44) and VT (111 +/- 60) versus PWCHRT or EMGFT. The results of this study indicated that (a) the mathematical model used to determine the PWCHRT and EMGFT was applicable to the measurement of VO2 and could be used to estimate the PWCVO2 during cycle ergometry, (b) there was a difference in the mean power outputs that corresponded to the fatigue thresholds determined from EMG and heart rate measurements, and (c) the PWCVO2 test may provide a useful submaximal technique for estimating the VT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call