Abstract

In image segmentation, there are many methods to accomplish the result of segmenting an image into k clusters. However, the number of clusters k is always defined before running the process. It is defined by some observation or knowledge based on the application. In this paper, we propose a new scenario in order to define the value k clusters automatically using histogram information. This scenario is applied to Ncut algorithm and speeds up the running time by using CUDA language to parallel computing in GPU. The Ncut is improved in four steps: determination of number of clusters in segmentation, computing the similarity matrix W, computing the similarity matrix's eigenvalues, and grouping on the Fuzzy C-Means (FCM) clustering algorithm. Some experimental results are shown to prove that our scenario is 20 times faster than the Ncut algorithm while keeping the same accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.