Abstract
Alzheimer's disease (AD) is an advanced and incurable neurodegenerative disease that causes progressive impairment of memory and cognitive functions due to the deterioration of brain cells. Early diagnosis is substantial to avoid permanent memory loss and develop treatments that will be subtracted in the future. Deep learning (DL) is a vital technique for medical imaging systems for AD diagnostics. The problem is multi-class classification seeking high accuracy. DL models have shown strong performance accuracy for multi-class prediction. In this paper, a proposed DL architecture is created to classify magnetic resonance imaging (MRI) to predict different stages of AD-based pre-trained Convolutional Neural Network (CNN) models and optimization algorithms. The proposed model architecture attempts to find the optimal subset of features to improve classification accuracy and reduce classification time. The pre-trained DL models, ResNet-101 and DenseNet-201, are utilized to extract features based on the last layer, and the Rival Genetic algorithm (RGA) and Pbest-Guide Binary Particle Swarm Optimization (PBPSO) are applied to select the optimal features. Then, the DL features and selected features are passed separately through created classifier for classification. The results are compared and analyzed by accuracy, performance metrics, and execution time. Experimental results showed that the most efficient accuracies were obtained by PBPSO selected features which reached 87.3% and 94.8% accuracy with less time of 46.7 sec, 32.7 sec for features based ResNet-101 and DenseNet-201, receptively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.