Abstract

Nontargeted (NTA) and suspect screening analyses (SSA) aim to detect and identify unknown compounds of interest from a given sample. The complexity and diversity of NTA and SSA methodologies necessitate the use of a comprehensive quality control standard mixture to determine if methods are fit for purpose, but to our knowledge, such a standard has not been developed that can be used by multiple disciplines, nor is one readily available. This work describes the development and analysis of a proposed nontargeted standard/quality control mixture for NTA and SSA applications using liquid chromatography/electrospray ionization-high resolution-mass spectrometry. Considerations in its development included achieving diversity of compounds with respect to elemental composition, molecular weight, retention time, and ionization in positive and/or negative ion modes, which resulted in the inclusion of 89 compounds. The utility of the standard mixture was applied on our own NTA and SSA workflows where sample preparation efficiency and potential sources of error due to instrumental and data processing methods were evaluated. Some areas in need of improvement were identified, such as hydrophilic compound detection and molecular formula generation for compounds containing fluorine. However, our overall methodology was found to be fit for purpose and we were able to establish thresholds to increase reliability and throughput of reported results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.