Abstract
Recent clinical trials suggest that tamoxifen (TAM) is a preventive agent for breast cancer, however, the mechanism is unknown. Previously, we found that both 17β-estradiol (E 2) and estrone (E 1) could be activated by epoxidation resulting in their ability to bind to DNA, forming DNA adducts both in vitro and in vivo, and to inhibit nuclear DNA-dependent RNA synthesis. Since epoxidation is required for the activation of many well-known chemical carcinogens including benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene, aflatoxins, etc., we proposed that estrogen epoxidation is the underlying mechanism for the initiation of breast cancer (Carcinogenesis 17 (1996) 1957). Here, we report that TAM is able to dramatically inhibit the formation of E 2 and E 1 epoxides as measured by both the loss of their ability to inhibit nuclear DNA-dependent RNA synthesis and to bind to nuclear DNA. These findings suggest that the breast cancer preventive effect of TAM may be through a competitive epoxidation inhibition mechanism that prevents the formation of E 2 and E 1 epoxides and consequently, the initiation of breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.