Abstract

Examining the validity or accuracy of proposed available bandwidth estimation tools remains a challenging problem. A common approach consists of evaluating a newly developed tool using a combination of simple nstype simulations and feasible experiments in situ (i.e., using parts of the actual Internet). In this paper, we argue that this strategy tends to fall short of establishing a reliable and we advocate an alternative in vitro-like methodology for calibrating available bandwidth estimation tools that has not been widely used in this context. Our approach relies on performing controlled laboratory experiments and using tools to visualize and analyze the relevant tool-specific traffic dynamics. We present a case study of how two canonical available bandwidth estimation tools, SPRUCE and PATHLOAD, respond to increasingly more complex cross traffic and network path conditions. We expose measurement bias and algorithmic omissions that lead to poor tool calibration. As a result of this evaluation, we designed a calibrated available bandwidth estimation tool called YAZ that builds on the insights of PATHLOAD. We show that in head to head comparisons with SPRUCE and PATHLOAD, YAZ is significantly and consistently more accurate with respect to ground truth, and reports results more quickly with a small number of probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.