Abstract

A bidirectional, fringe-counting, two-beam interferometer system is described that can be used for precision length measurement with any laser source that is adequately coherent for the application. The two electrical phase-quadrature signals required for bidirectional electronic counting are obtained from photodetectors at the two interferometer outputs. A thin metal film design for the beam-splitter coating introduces the required phase difference of nearly 90° for both the perpendicular and parallel polarization components. Electronic alignment and control are performed by a system used to continuously monitor the signals produced from the outputs and automatically process these signals to achieve the optimum performance from the interferometer. Interferometers using the technique require a limited amount of optical alignment and all of the electronic adjustments are automatically controlled by the electronic system. These instruments are economical to manufacture and easy to apply in practice, readily achieving subnanometric accuracy in the measurement of changes in optical path.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.