Abstract
Time dilation (TD) is a principal concept in the special theory of relativity (STR). The Einstein TD formula is the relation between the proper time t0 measured in a moving frame of reference with velocity v and the dilated time t measured by a stationary observer. In this paper, an integral approach is firstly presented to rededuce the Einstein TD formula. Then, the concept of TD is introduced and examined in view of the fractional calculus (FC) by means of the Caputo fractional derivative definition (CFD). In contrast to the explicit standard TD formula, it is found that the fractional TD (FTD) is governed by a transcendental equation in terms of the hyperbolic function and the fractional-order α. For small v compared with the speed of light c (i.e., v≪c), our results tend to Newtonian mechanics, i.e., t→t0. For v comparable to c such as v=0.9994c, our numerical results are compared with the experimental ones for the TD of the muon particles μ+. Moreover, the influence of the arbitrary-order α on the FTD is analyzed. It is also declared that at a specific α, there is an agreement between the present theoretical results and the corresponding experimental ones for the muon particles μ+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.