Abstract

Abstract. Recent advances in computing power and sensing technology led to a significant evolution of Structural Health Monitoring (SHM) techniques, transforming SHM into a “Big Data” problem. The use of data-driven approaches for damage identification purposes, specifically Machine Learning (ML) methods, has gained popularity. ML can help at various levels of the SHM process: to pre- and post-process input data, extract damage sensitive features, and operate pattern recognition in measured data and output valuable information for damage identification. In this paper, the role of ML in SHM applications is discussed together with a new scheme for classifying ML applications in SHM, especially focusing on vibration-based monitoring, given its consolidated theoretical base. Finally, the implications of the application of these methods to historic structures are discussed, with a brief account of existing case studies. The proposed classification is exemplified using the most recent studies available in the literature on cultural heritage structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call