Abstract

We propose theoretically two-input arbitrary Boolean logic (NOR, OR, AND, XOR, XNOR, NAND) using single semiconductor optical amplifier (SOA) assisted by several detuning optical filters. The probe spectrum is broadened by picosecond pulse injection in the SOA, and four consequent optical Gaussian filters are used to select different frequency components to acquire logic NOR, OR, AND, XOR, respectively. Then two additional logic gates, XNOR and NAND, are realized by combining two logic channels. The power penalty, Q-factor, and extinction ratio are measured for all logic gates. It is shown that the output logic with dark return-to-zero (RZ) format has a large power penalty. The Q-factor is larger than 6 and the extinction ratio is larger than 6.3 dB for all logic gates within 16 nm wavelength range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.