Abstract
ATP-dependent chromatin remodeling motors play fundamental roles in nuclear processes by regulating access to DNA. Yet compared to other cellular motors less is known about how these motors couple the energy of ATP to alter their substrates. Here we use recent studies on a key chromatin remodeling motor from the ISWI class, human ACF and its yeast counterpart, ISW2, to propose a model for how these motors use ATP to read structural cues presented by nucleosomal substrates. Substantial earlier work has shown that ACF activity is strongly regulated by the length of the DNA flanking a nucleosome as well as by the histone H4 tail. Recent bulk and single-molecule studies of human ACF suggest that this complex functions as a dimeric motor. These studies, together with studies of yeast ISW2 imply that at least two types of ATP hydrolysis events accompany each cycle of nucleosome movement. We propose that ISWI motors may employ a kinetic proof reading type of mechanism to favor action on nucleosomes that are poised to be in condensed chromatin while inhibiting action on nucleosomes that are in fully active or fully condensed chromatin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.