Abstract

In this paper, we study the target tracking problem in a wireless sensor network. A sensor receives a measurement from an energy emitting target and employs binary quantization to the received measurement to generate its decision. A sinusoidal waveform with a certain duration is then used to transmit the sensor decision to the fusion center (FC). All sensor decisions are transmitted to the FC over erroneous wireless channels based on a time division multiple access scheme. We introduce the proportional time allocation (PTA) algorithm where at each time step of tracking, PTA jointly determines the sensors binary quantization thresholds and their time allocations devoted for the transmissions of binary sensor decisions. Simulation results show that, PTA optimally and dynamically distributes the available transmission time among the sensors near the target so that the decisions of such sensors become less subject to channel errors, and turns off the non-informative sensors located far away from the target. Hence, PTA both saves from the number of sensors transmitting to the FC and provides better estimation performance as compared to ad hoc equal time allocation approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.