Abstract

The integration of advanced linear parameter-varying and classical proportional–integral–derivative control methods has attracted great attention in control of nonlinear dynamic systems. However, linear parameter-varying proportional–integral–derivative control synthesis is a nonconvex bilinear matrix inequality problem. Although the synthesis conditions can be convexified in the case of proportional–integral control, a strong constraint on the structure of matrix variables usually leads to infeasible solutions. In this paper, a linear parameter-varying proportional–integral control design method is proposed to remove that constraint. The approach is based on the assumption of state-feedback proportional–integral control to guarantee the linear matrix inequality variables to be full matrices instead of block diagonal matrices, and extended linear matrix inequalities are proposed to synthesize the controller. This increases the likelihood of finding feasible linear matrix inequality solutions and reduces the conservatism. The proposed method is applied to control longitudinal and lateral dynamics of an F-16 aircraft and promising simulation results are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.